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ABSTRACT

This study demonstrates the feasibility of using linear programming to determine
the allocation of avionics maintenance needed by the Indonesian Air Force between
organizational maintenance facilities and outside contracting. Although the research
focusses on avionics maintenance, the general principles are applicable to other military
and civilian organizations. This study demonstrates how the application of linear
programming techniques can help the Air Force with its strategic planning for
maintenance of aircraft. However, it is not currently possible to implement such a system
without development of a supporting data collection system. Therefore, it is recommended
that development of such a system begin as soon as possible. A logical starting place is

within the avionics maintenance organization.
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I. INTRODUCTION

A. BACKGROUND AND PURPOSE OF THESIS

1. National Objectives and Policy Direction

The Republic of Indonesia is a sovereign and democratic state whose development
objective is to create a unified and prosperous society which balances material and
spiritual welfare in an equitable distribution among Indonesia’s population, based upon
the state philosophy Pancasila. The allocation of resources and the results of trying to
implement national development are synonymous with an earnest attempt to put Pancasila
into practice. Development efforts are carried out in a continuous, comprehensive, and
integrated manner in stages according to Five-Year Development Plans (Repelita), and
within the general framework of Long-Term Development Guidelines sanctioned by the
People’s Consultative Assembly.

The guidelines of state policy issued by The Consultative Assembly emphasize
economic development. Development in other sectors is carried out in conformity with,
and in accordance with, the progress achieved in the economic sector. The implementation
of this development policy depends upon the Trilogy of Development, which emphasizes
maintaining equity in the development process in order to achieve social justice for all,
with sufficiently high economic growth, and with sound, dynamic, and stable national
policy. The three elements of the Trilogy of Development are interrelated and need to be
implemented in a harmonious, integrated and mutually supporting manner.

Twenty five years of national effort have been directed towards implementing the
development policy based on these guidelines. The efforts to solve basic problems of
development have resulted in many concrete and visible achievements. However, at the
same time the dynamics of development have brought about new problems demanding
solutions. In addition, all organizations at all levels have to be involved in finding more
effective and efficient solutions to achieve the goal of their organization in parallel with

the national objective and policy direction [Ref. 1].




2. National Science and Technology Development

In national development, science and technology play a crucial role as
industrialization accelerates. Therefore, science and technology have received increasing
attention. Similar to with national development, science and technological development
is carried out through five main national research and technological programs: primary
human needs; energy and natural resources; industrialization; defense and security; and
society, economy, culture, philosophy, law and legislation. The National Research Council
was founded in 1984 and coordinates, formulates, monitors, and evaluates these programs.

The developing industry in Indonesia reflects an increasing capacity to create new
technologies, as well as integrate existing ones. In the aviation industry, 214 aircraft have
been delivered to customers: 91 NC 212-type planes, 24 CN235-type planes, 19
NBEL412-type helicopters, 84 NBO105-type helicopters, and 10 NAS 332-type
helicopters. Fifteen of these were exported. A contract has been signed for the
manufacture spare parts for the F-16 jet-fighter, and the Boeing 737, Boeing 767 and
F-100 commercial airplanes. Industrial progress also gives challenging tasks to decision
makers in maintenance organizations with scarce resources.

3. Armed Forces and Air Force

Currently, Indonesia is one of the fastest developing countries in Southeast Asia.
Indonesian’s operations and management decisions involve trying to make the most
effective use of its resources. Limited resource allocation is a major problem for most
organizations in Indonesia, such as the Armed Forces and the Indonesian Air Force, in
particular. Indonesian Air Force’s resources typically include machinery, personnel,
money, time, maintenance facilities and warehouse space, aircraft, avionics equipment,
radar, and spare parts.

The Indonesian Armed Forces have a dual function; they are a defense and security
force and a social force. The Indonesian Air Force is an integral part of the Armed
Forces and it has the following missions: to protect air sovereignty and maintain air
superiority above Indonesia’s territory, and to develop the national aviation potential.

Thus, the Air Force not only has a military mission, it also has a civilian mission as well.




The Air Force of the Republic of Indonesia was established as a separate service in
1946, and evolved from the aviation division of the People’s Security Force (BKR).
Initially, the Air Force was fairly small and flew mostly United States and Western
European aircraft. However, from the early 1950’s to the early 1980’s, the force expanded
rapidly, with a variety of aircraft and avionics equipment [Ref. 2, p. 325]. During the
early years the Air Force did not have maintenance facilities for intermediate or depot
maintenance capability, and only a few squadrons had flight-line maintenance or

organization maintenance facilities with a functional test capability.

Maintenance is all actions necessary for retaining an item in or restoring
it to, a serviceable condition. Maintenance includes all of the following
procedures in regards to aircraft: service and repair, modification,
modernization, overhaul, inspection, and condition determination [Ref. 3].

Having maintenance facilities for the Indonesian Air Force has some advantages:
maintenance costs are cheaper than maintenance contracts for intermediate or long-term,
because the Air Force does not pay direct labor costs, taxes and so forth; turn around time
is much less and allows for increased availability. The motto of the Air Force or in any
military organization is "high availability." The investment in highly-skilled maintenance
personnel to improve productivity in the Air Force, Armed Forces, and Government and
the transplant of technology will contribute to Indonesian’s future development.

By the late 1978’s a meeting (a small conference) was held at Air Force
Headquarters to evaluate the need to set-up avionics maintenance facilities. The meeting
was composed of three officers: Lieutenant Colonel Djati (now Col. Ret.), Captain
Sardjono (Air Vice Marshall), and Captain Hadi Prawoto (Colonel). Out of this meeting
came an avionics maintenance organization concept for the Air Force. The major reason
for establishing avionics maintenance was that during its thirty-eight years existence the
Air Force had spent a huge amount of money for maintenance contracts on avionics
equipment. Yet many aircraft could not be flown because of avionics problems. The

objectives of the avionics maintenance program were to:




» Reduce Maintenance Cost, and

« Create the Ability to Respond Rapidly to Avionics Problems.
To achieve these objectives the Indonesian Air Force needed to invest in training highly
skilled personnel and in acquiring advanced technology.

In 1983, the Avionics Maintenance Shops were inaugurated by Air Chief of Staff,
and named Skavionics 01 (in Iswayudi AFB, Madiun) and Skavionics 02 (in Halim AFB,
Jakarta). The maintenance levels of the Avionics Maintenance Organization are
intermediate level and limited depot level. They have the missions to repair and maintain
the communication, navigation, airborne radar, guidance system, and other special
equipment.

During the past ten years of squadron avionics maintenance, the Air Force has
accumulated a great deal of experience in repairing avionics equipment. In this thesis, I
will show how the Avionics Maintenance Organization impacts the readiness of aircraft
in any air operation and how the Avionics Maintenance Organization could maximize the
readiness of aircraft by implementing linear programming in the planning for the repair
of avionics equipment. In particular, through linear programming the Avionics
Maintenance Organization could reduce the overall maintenance costs while improving
the response time. _

Readiness is a concept that integrates the diverse factors that affect the ability to
deploy, engage, and sustain an effective combat force [Ref. 4]. In other words, readiness
is a measure of the ability of military forces, units, weapon systems, equipment, and
personnel to perform functions for which they have been designed, organized or trained
[Ref. 5]. So, in this case, I define readiness as the percentage of time an aircraft is
available for service. For example, there are 24 hours per day, and the total hours per
month are 24 x 30 = 720 hours. If an aircraft is available for service for 600 hours during
the month, then its readiness is 600/720 or 83 percent.

Linear programming is a management technique that can be used to enhance
readiness. This technique employs a mathematical model in which the constraint structure
consists of linear systems of equations or inequalities and the objective function is also

linear. The linear programming model can be an effective and efficient tool for decision

4




makers to improve the allocation of scarce resources, and can indicate how resources
promote readiness. The model can indicate what resources constraints are significant and

how those constraints interact in the maintenance operations of the Air Force.

B. RESEARCH OBJECTIVES

The primary research objective is to demonstrate that linear programming can be
used in resource allocation decisions in the maintenance operations of the Indonesian Air
Force. In particular, linear programming can optimize the use of limited resources to
maximum readiness in the Air Force. The secondary objectives are to identify the
significant factors impacting readiness, and to demonstrate how linear programming can
assist decision makers in focussing on these factors in the decision making process.
Finally, this study will show what information is required by decision makers to use linear
programming to support the decision making process in the Indonesian Air Force

maintenance facilities.

C. THESIS SCOPE AND LIMITATIONS

The thesis surveys the current literature and presents some examples of military and
relevant non-military uses of linear programming. This thesis then develops a linear
programming application as an example of its possible uses in the Indonesian Air Force.

The outputs from that example are discussed in detail.

D. METHODOLOGY

The methodology employed in this thesis research effort is to collect information
relevant to linear programming by researching reference books and periodicals dealing
with production and operation management systems and linear programming models.
Then, as an example, the author will formulate and solve a specific problem in the
Indonesian Air Force. The author will use a mixture of avionics production and
maintenance data from author’s experience during the last ten years, to simulate the

maintenance activities of Indonesian Air Force after ten or fifteen years of operation.




E. ORGANIZATION OF THE THESIS

The thesis is divided into four chapters. Chapter I is the introduction which covers
the background and purpose of the thesis. Chapter II discusses linear programming and
formulation from a theoretical perspective, and reviews the results from relevant
applications. Chapter III is a formulation and discussion of an example problem associated
with the Indonesian Air Force Avionics Maintenance Organization. Chapter IV contains
a summary, presents conclusions, and makes recommendations for using linear

programming.




II. LINEAR PROGRAMMING AND MODEL FORMULATION

A.  WHAT IS LINEAR PROGRAMMING?

Linear programming' [Ref. 6] is a technique for specifying how to use
limited resources or capacities of business to obtain a particular objective,
such as least cost, highest margin or least time, when those resources have
alternative uses. It is a technique that systematizes for certain conditions
the process of selecting the most desirable course of action, thereby giving
management insight for making more effective decisions about the
resources under its control [Ref. 1]

Many people know what linear programming is, but not all people know how to
implement linear programming in the real world. Linear programming is not a
complicated concept. Its basic argument is that when two or more things vary together,
there may be a best combination for the two or more things, given a single goal like
minimum cost or maximum yield. Almost all managers apply this notation in deciding on
things like price levels (where price and units sold are related), or the best mix of
products for a given production facility (where some mixes utilize capacity better than
others), or the mix of compensation between base salary and incentives that will result,
say in the highest sales (profits).

Linear programming problems are concerned with the efficient use and allocation
of limited resources to meet a stated objective. These problems are characterized by a
large number of solutions that satisfy the basic conditions of the problem. The selection
of a particular solution depends upon an overall objective, such as maximizing profit or
minimizing costs. A solution that both satisfies the conditions of the problem and
accomplishes the objective is called an optimal solution. Finding this solution is known

as a mathematical "programming problem."

'The term linear programming was suggested by T.C Koopmans in 1951 as an
alternative to the earlier form, "programming in a linear structure."




The most difficult task is applying this simple idea to a complicated situation where

many things go on simultaneously, and where a large fraction of all potential solutions
may not work at all (are not feasible). The major contribution of linear programming is
identifying problems where a best (optimum) feasible solution exist and providing a
computational method for finding these solutions at a reasonable cost [Ref. 7].
Linear programming is one of a number of mathematical programming tools which seek
a least-cost solution to meeting imprecise specifications. The distinction between linear
programming and the other mathematical programming techniques is that linear
programming requires linearly proportional relationships. The resources consumed by an
activity must be linearly proportional to the level of the activity.

Linear programming is a specialized mathematical decision making tool. Each of
us tries to make the best decisions possible with the tools available. Like other widely
used mathematical methods, linear programming can only help us interpret data and to
explore theories about the way things work or should work. If the data is spurious and
incomplete, or if the mathematical rﬁodel and theory are inappropriate, mathematical
decision making aids such as linear programming are more likely to confuse rather than
clarify a decision. Linear programming was developed for specific classes of applications
which assume optimal behavior and have linear relationships [Ref. 8, pp. 3-15, 9, 10].

Finally, we must be able to implement an optimal solution if we hope to gain by
applying linear programming to a problem. An optimal solution implies that decision
makers are aware of all the important information on which to evaluate a decision, or at
least can identify the best decision. There is one criterion that is best for all decisions.
Some people regard economic gain as something to be maximized, others prefer to
minimize the use of resources.

This thesis explains how linear programming methods work in actual practice, using
a sequence of example problems from maintenance operations as the basis for discussion.
Summarizing, linear programming is a mathematical tool for obtaining optimum solutions
that do not violate imprecise constraints, that cannot have negative activity levels, that
require linearly proportional relationships, and that account for all inputs and outputs

within the system.




B. CLASSIFICATION OF PROGRAMMING PROBLEMS

Basically, there are two classes of programming problems, deterministic and
probabilistic problems.

1.  Deterministic Problems

The deterministic class implies that if certain actions are taken it can be predicted
with certainty what will be the requirements to carry out those actions, and the outcome
of any actions [Ref. 11, 12, 6]. I will use this class to solve the problem in our discussion
in the following chapter.

2.  Probabilistic Problems

Probabilistic problems are defined as programs involving uncertainty. Uncertainty
can arise in many ways. For example, the outcome of a given action may depend on some
chance event such as traffic delays, government policy, weather, employment levels, or
the rise and fall of customer demand [Ref.11, 12, 6]. In the rest of this thesis we will not

consider this class of models.

C. MODEL FORMULATION

1.  Basic Concept

Some references use the term "model building" to express the procedures or the
process of putting together mathematical symbols according to certain rules to form a
structure (the model) which corresponds to certain aspects of a system in the real world.

From the 1940’s to the 1990’s, linear programming was applied to decision making
in many fields such as economics, engineering, industry, and government because these
areas contain many problems amenable to this type of model building. Also linear
programming has the simplest mathematical structure which can be used to solve
management problems.

As we shall see, linear programming is concerned with describing the relationship
between the components in a system. T.C Koopmans introduced the term "activity

analysis" to identify the elementary functions which make up a system [Ref. 6]. An




activities is thought of as a kind of "black box"* into which flow tangible inputs, such
as people, material, and equipment, and out of which flow tangible output such as the
products of manufacturing, or the trained personnel of a military crew.
2.  Basic Assumptions
To be a linear programming model, the system must satisfy certain assumptions of

proportionality, nonnegativity, additivity and linearity [Ref. 6, 11].

a. Proportionality

The first assumption is proportionality. This means that in the linear
programming model the amount of flow of various resources into and out of an activity
are always proportional to the activity level. For example, if you wish to double an output
resources, you simply double the activity level. The activity level needs to have a defined
unit of measure. The resources need to also have defined units of measure [Ref. 11, 12,
9, 10, 6].

b. Nonnegativity

All activity levels have to be non-negative. In other words, negative activity
levels are not possible. For example, we cannot ship a negative number of items from one
place to another.

c. Additivity

Another characteristic of the linear programming model is the additivity
assumption. A step in building a model is to specify that the system of activities be
complete in the sense that a complete accounting of the activity can be made for each
item. The total amount of each item specified by the system equals the sum of the
amounts flowing into the various activities minus the sum of the amounts flowing out for
each item. This is called a material balance equation [Ref. 6]. In other word, under this
assumption the total amount of a resource used by the system equals the sum of the

amounts of that resource used by the various activities.

?Black box : any system whose detailed internal nature one willfully ignores [Ref.
6].
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d. Linear Objective Function

The last characteristic of the linear programming model is known as the linear
objective function assumption. One of the resources in the system is considered as
"precious”. It means that the total quantity of it produced by the system measures the
payoff. The precious item could be completed assemblies, skilled labor, or an input
resource that is in scarce supply like a limited monetary budget. The contribution of each
activity to the total payoff is the amount of the precious resource that flows into or out
of each activity. Therefore, if the objective is to maximize profits, activities that require
money contribute negatively and those that money contribute positively to the total profits
[Ref. 6].

3. Basic Model Components

The model components include decision variables, an objective function, and
model constraints.

Decision variables usually are mathematical symbols that represent the unknown
levels of activities being conducted by an organization. For example, suppose Indonesian
Aircraft Industry (IPTN) desires to produce X1 C.250 aircraft, X2 C-235 aircraft, and X3
SA-330 aircraft. Then, X1, X2 and X3, are symbols representing unknown variable
quantities of each activity (the producing of a certain aircraft). The final values of X1, X2
and X3 constitute a decision, e.g., X1 = 15 C-250’s is a decision to produce 15 C-250’s
aircraft.

The objective function is a linear mathematical relationship of the decision
variables that describes the objective of the organization in terms of the precious
resources. Linear programming attempts to either maximize or minimize the objective
function.

The model constraints are a result of the material balance equations described
above and represent the restrictions placed on the organization by operating environment.
The restrictions can be in the form of limited resources or restrictive guidelines. For
example, only 250 days of labor may be available per year to produce aircraft. The actual
numerical values in the objective function and the constraints, such as the 250 days of

available labor, are parameters.
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4. Building the Model
Building the model is the first and perhaps the most important step in the

formulation of a linear programming problem. Dantzig provides a systematic procedure
for building a linear programming model as follows [Ref. 6].

a. Define the Activities

Decompose the entire system under study into all of its elementary functions
(activities) and choose a unit of measure for each activity by which its level can be
quantified.

b. Define the Item Set

Determine the items (or resources) which are consumed or produced by the
activities and choose a unit for measuring each item. Select one item such that the net
quantity of it produced by the system as a whole measures the cost (the costs may happen
to be money; however, in economic examples, they could be measured in terms of any
scarce resource) of the entire system.

c. Determine the Input-output Coefficient

Determine the quantity of each item consumed or produced by the operation
of each activity at its unit level. These quantities are called the input-output coefficients
and are the factors of proportionality between activity levels and item flows.

d. Determine Exogenous Flows

Determine the net inputs or outputs of the items in the system taken as a
whole. These values represent the bounds (or right-hand-side values) of the constraints
(the material balance equations).

e. Determine the Material Balance Equations

Assign unknown nonnegativity levels to all activities. Then, for each item,
write the material balance equation which asserts that the algebraic sum of the flows of
that item into and out of each activity (given as the product of the activity level by the
appropriate input-output coefficient) is equal to the exogenous flow of the item. This
includes the materiel balance equation for the item which is considered "precious”. That
equation has an unknown exogenous flow since the equation will be the objective function

for the model.
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In developing the materiel balance equations for items other than the one used in
the objective function the exogenous flows may not need to be met exactly; rather, they
may be bounds on the items’ total usage by all the activities. When this happens we state
the equations as inequalities. Then, when the problem is being solved, slack and surplus
variables are added to make the inequalities into equations because the solution procedure
(the simplex method) only works with equations.

When we have < inequality constraints, the solution software transforms <
inequality constraints into equations. This transformation is achieved by adding a new
nonnegative variable, called a slack variable, to each constraint. For example, is

2X, + 3X, + 2X, < 120 hours of operation 1.

The addition of a unique slack variable s to an inequality results in the following
equation;

2X, + 3X, + 2X; + s = 120.

If, in the optimal solution, the activity level values are X, = 0, X, = 30, X; = 10,
substitution these values into the above equation yields:

2(0) + 3(30) + 2(10) + s = 120, or

s =120 -110 = 10 hours.

Thus, in general, s represents the amount of unused capacity in operation 1.

Instead of adding a slack variable to a > constraint, the solution software
subtracts a nonnegative surplus variable. Whereas a slack variable reflects the amount of
unused resource, a surplus variable reflects the excess above a minimum resource
requirement level. Like the slack variable, a surplus variable can be represented
symbolically by s.

For example, the dual linear programming problem is

2Y, +4Y, +3Y, + 1Y, 240
The subtraction of a nonnegative surplus variable gives:

2Y, +4Y, +3Y, +1Y,-5s=40
If the optimal values are Y, =0, Y, =0, Y; =5, and Y, = 25, then substituting these
values into above equation yields:

2(0) + 4(0) + 3(5) + 1(25) - s = 40
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s=40-40=0.
In this case there is no excess resources, assuming the constraint is a resource constraint
of some type.

Once the materiel balance equations or inequalities have been developed, the
linear programming problem can be posed in mathematical terms; that is, determine levels
for the activities X,, X,, ...X; which (a) are nonnegative (b) satisfy the material balance
equations, and (c) minimize or maximize the objective function. [Ref. 6] The solution
can be interpreted as a program for the system - a statement of the time and quantity of
actions to be performed by the system so that it may move from its current status toward
the defined objective.

f.  Solve for Optimal Values of Variants (feasible solution)

The linear programming problem is to find the optimal feasible values of the
decision variables that will maximize the total profit or minimize the total cost (the
objective function subject to the constraints on resources and the nonnegativity
conditions). A feasible solution is solution that satisfies the constraints and nonnegativity
conditions. Linear programming problems typically have more decision variables
(unknown activity levels) then there are material balance equations. As a consequence, a
solution to this type of system of linear equations will only have positive values for at
most a number of decision variables equal to the number of equations. The positive-
valued decision variables are called dependent or basic variables and the rest are called
independent or non-basic variables. The reason for calling the positive variables
"dependent" is that their values are determined after setting the independent variables’
values to zero. A basic feasible solution is defined as the special solution obtained by
setting the independent (non-basic) variables equal to zero and solving for the
nonnegative values of the dependent (basic) variables [Ref. 6].

Historically, the simplex method has been the technique for solving linear
programming problems. In the simplex method, the model is put into the form of a table
and then a number of mathematical steps are performed on the table. These mathematical
steps are the process for moving from one basic feasible solution to the next until the

optimal solution is reached. One iteration of the simplex method uses the information
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from the current table to generate a new table corresponding to the new basic feasible

solution.

D. POST-OPTIMALITY ANALYSIS

Post-optimality analysis means the analysis of the optimal basic feasible solution in
order to gather additional information [Ref. 11]. The optimal solution of a linear
programming model can be analyzed in two ways: sensitivity analysis and duality
analysis.

1.  Sensitivity Analysis

When a linear programming model is formulated, it is implicitly assumed that the
parameters of the model are known with certainty. These parameters include the objective
function coefficients, such as profit per unit of an activity; model constraint quantity
values, such as the total available hours of labor; and constraint coefficients (input-output
coefficients), such as pounds of material used to produce an item. However, rarely does
a manager know all of these paraméters exactly. In reality, the model parameters are
simply estimates or "best guesses". For this reason it is of interest to the manager to see
what effect a change in a parameter may have on the solution to the model. The analysis
of the effects on the model solution of making a small change in the value of a parameter
is known as sensitivity analysis.

For example, suppose we have an estimate of the absentee rate of our labor force
during the next month, and the model has been run using the estimate. What happens to
the optimal solution if we change the estimate by 5%, 10% or even 15%? Will the
optimal objective function value vary widely, or will it remain more or less unchanged?
Obviously, the answer to such questions will help to determine the credibility of the
model’s recommendations. For example, if the objective function value changes very little
with large changes in the value of a particular parameter, we will not be concerned about
uncertainty in the current value of that parameter. If, on the other hand, the objective
function value varies widely with small changes in that parameter, we cannot tolerate

much uncertainty in its value.
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The most obvious way to ascertain the effect of a change in the parameter of a
model is to make the change in the original model, resolve the model, and compare the
solution results with the original. However, resolving a problem numerous times for all
possible combinations of changes can be very time consuming. In most cases the effect
of minor changes on the model can be determined directly from the final simplex table
(commonly called a tableau) [Ref. 11, pp. 145-147]. We, however, will use the ABQM
program output instead to interpret and analyze the optimal simplex tableau. ABQM is
a management science software package published by Allyn and Bacon [Ref.11]. It will
automatically provide the sensitivity analyses for a given problem.

Making good use of computer analysis is, of course, a problem faced by managers
in the real world. In this analysis we lay some of the groundwork for being able to
understand clearly the meaning of the computer results from ABQM software.

a. Changes in Objective Function Coefficients

It can be demonstrated that a change in one of the coefficients of the objective
function may change the optimal solution. Therefore, sensitivity analysis is performed to
determine the range over which each coefficient of the objective function can be changed,
assuming the others are not, without altering the optimal solution.
The result is a range of values for a coefficient of the objective function that will not
result in a change in the optimal solution. If the coefficient is associated with a non-zero
basic variable in the optimal solution, then the objective function’s optimal values will
change linearly as the coefficient is varied even though the solution does not. If the
coefficient is associated with a non-basic basic variable (which will always have a value
of zero) or a basic variable having a zero value (i.e., a degenerate optimal solution) then
the objective function’s optimal value will not change.

b. Changes in Constraint Quantity Values

A change in the total amount of a constrained resource may change the
feasible solution. If the constraint is not binding (i.e., the resource associated with that
constraint is not completely used up in the optimal solution) then the value of the slack
variable (it will be part of the basic feasible solution output) is the amount that the total

quantity of the resource can change before affecting the optimal solution. If the constraint
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is binding, then any change in the total quantity of the resource will change the optimal
solution.

c. Changes in the Constraint Coefficients (Input-Output Coefficients

Change)

Changing the input-output coefficients can alter the optimal solution if the
coefficient is associated with a non-zero basic variable. The entire basic feasible solution
usually changes. The impact is more complex than that for the objective function’s
coefficients or the resource total quantities (constraint quantity values). The coefficients
for non-basic variables and basic variables having zero value can vary without changing
the optimal solution.

2.  Duality Analysis

The duality analysis is a method based on the dual model of linear programming.
The dual model is derived completely from the primal model. This model provides
decision makers with an alternative way of looking at a problem. Because the dual model
provides information regarding the economic value of the constrained resources it is useful
for examining ways of increasing profit or decreasing cost [Ref. 11].

Table 1 illustrates how the dual model is derived from the primal.

Primal Dual
Max=Z, = 40 X, + 35 X, + 45 X, Min=Z, = 120 Y, + 160 Y, + 100 Y, + 40 Y,
subject to subject to
2X,+3X,+2X,<120 2Y,+4Y,+3Y;+ Y, 240
4X,+3X,+ X;<160 3, +3Y,+2Y,+1Y,235
3X, +2X,+4X,<100 2Y,+ Y,+4Y,+ Y, 245
X, + X+ X;540
X, X, X320 Y,,Y;,Y;20

Table 1. The Primal-dual Relationships.
From Table 1 the following relationships between the primal and dual model can be seen

[Ref. 11, 6, 13, 15] :
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 The dual variables Y,, Y,, Y, and Y,, correspond to the model constraints in
the primal. For every constraint in the primal there will be a variable in the
dual. For example, in this case the primal has four constraints; therefore, the
dual has four decision variables.

« The objective function coefficients in the primal model, 40, 35, and 45
represent the model constraint requirements (quantity values on the right-hand
side of the constraints) in the dual.

« The model constraint coefficients in the primal are also the decision variable
coefficients in the dual. For example, coefficients in the first constraint are 2,
3, and 2. These values are the Y, variable coefficients in the model constraints
of the dual: 2Y,, 3Y,, and 2Y,.

« The quantity values on the right-hand side of the primal inequality
constraints are the objective function coefficients in the dual. The constraint
quantity values in the primal; namely, 120, 160, 100, and 40, are used to form
the dual objective function : Z, = 120Y, + 160Y, + 100Y, + 40Y,.

« The maximization primal model has < constraints, the minimization dual model
has > constraints. The converse is also true.

The optimal solution to the dual provides values for the Y’s. These are called
"shadow prices" associated with the constraint quantity values of the primal model. As
noted above, each primal constraint has one Y variable associated with it. The value of
Y for a given constraint tells the decision makers how much the optimal primal model’s
objective function value will change with a unit change in the right-hand side value of the
constraint. For example, suppose Y; = 5 in the dual optimal solution. Then that suggests
that the optimal value of the primal objective function will increase by 5 for an increase
in the third constraint’s right-hand side from 100 to 101. It is important to note that this
is really a marginal analysis and that an actual change in the right-hand side may give a

different change in the objective function.

E. HOW CAN LINEAR PROGRAMMING BE USED IN RESOURCE
ALLOCATION DECISION MAKING?

Linear programming problems are concerned with the efficient use or allocation of
limited resources to meet desired objectives. These problems are characterized by the large

number of solutions that satisfy the basic conditions of each problem. The selection of
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a particular solution as the best solution to a problem depends on some aim or Qverall
objective that is implied in the statement of the problem. As mention above, solution that
satisfies both the constraint conditions of the problem and the given objective is termed
an optimal solution. A typical example is that of the manufacturing company that must
determine what combination of available resources will enable it to manufacture products
in a way which not only satisfies its production schedule, but also maximizes its profit
or, in the case of a military organization maximizes its readiness. at maximum readiness.

In 1947, Dantzig initiated the development of linear programming modeling with
inequality constraints and invented the simplex method. Shortly after World War II, a
group of scientists was called upon by the U.S. Air Force to investigate the feasibility of
applying mathematical techniques to problems of military logistics that were of particular
concern. George Dantzig was one member of the research team. Dantzig had earlier
proposed that the interrelations between activities of a large organization be viewed as a
linear programming model and that the optimal program (or selection) be determined by
minimizing a (single) linear objective function. Such ideas led the Air Force to set up a
team under the project name SCOOP (Scientific Computation of Optimum Programs).

By the middle of 1947 Dantzig and his associates had developed not only an initial
linear programming mathematical model but also a general method for solving linear
programming problems. This method was called the "Simplex Method." [Ref. 16]

As a consequence of these developments, linear programming was quickly adopted
by mathematicians, economics, operations researchers, and individuals in a number of
military and civilian organizations. Some examples of successful linear programming in
aviation are discussed below:

1.  U.S. Air Force Staff

A linear programming model is used to help the U.S. Air Force Staff decide how
much to spend on different types of aircraft and munitions. Currently this model is being
used by the Air Force Center for Studies and Analyses and is being tested by the
Munitions Division of the Plans and Operations Directorate (AF/XOXFM) for munitions
trade-off analyses. The Air Force model uses existing data estimates on aircraft and

munitions effectiveness, target value, attrition, aircraft and munitions cost, and existing
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inventories of aircraft and munitions. Other factors considered are weather and the length
of conflict. Enhancements currently being implemented include attrition changes as a
function of time and the distance the aircraft must fly. Decision variables are the total
number of sorties flown by each aircraft/munitions combination against each target type
in each of six different weather bands. The model includes the probability of killing target
types under the six conditions of weather and the subjective value of target types. The
model constraints include number of available aircraft and munitions, number of targets,
weather conditions, and budget [Ref. 17].

2.  Delta Airlines and MAC

Delta Airlines is one of the biggest companies in the United States and became the
first commercial airline to use Karmarkar’s program, called KORBX, developed by
Narendra Karmarkar and sold by AT&T. The simplex method finds an optimal solution
by moving from one adjacent corner point to the next, following the outside edges of the
feasible region [Ref. 6,12]. In contrast, Karmarkar’s method follows a path of points on
the inside of the feasible region. Its uniqueness is its ability to handle an extremely large
number of constraints and variables [Ref. 12, 18, 19].

Delta Airlines found that the Karmarkar program streamlined the monthly
scheduling of 7,000 pilots who flew more than 400 airplanes to 166 cities world-wide.
With increased efficiency in allocating limited resources, Delta thinks it will save millions
of dollars in crew time and related costs.

Another user is the U.S. Air Force Military Airlift Command (MAC). Prior to the
arrival of KORBX, MAC’s linear programming problem was too big to run on one
computer. Even a scaled-down version of the problem had 36,000 variables and 10,000
constraints and took four hours with simplex-based linear programming software on a
mainframe. Now, models that include the entire, previously unsolvable Pacific Ocean
system run in just 20 minutes on KORBX [Ref. 12].

3.  American Airlines

Linear programming techniques have a direct impact on the efficiency and
profitability of major airlines. Thomas Cook, President of American Airlines Decision

Technology Group, tells us why optimal solutions are essential in his industry.
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Finding an optimal solution means finding the best solution. Let’s say
you are trying to minimize cost or a cost function of some kind. For
example, we may want to minimize the excess cost related to scheduling
crews, hotels, and other costs that are not associated with the flight line
and considering constraints, such as the amount of time a pilot can fly,
how much rest time is needed, and so forth.

An optimal solution, then, is either a minimum-cost solution or
maximizing solution. For example, we might want to maximize the profit
associated with assigning aircraft to the schedule; so we assign large
aircraft to high-need segments and small aircraft to low-load segments.
Whether it’s a minimum or maximum solution depends on what function
we are trying to optimize.

Finding fast solutions to linear programming problems is also essential.
A good example is a major weather disruption. If we get a major
disruption at one of the hubs, such as Dallas or Chicago, then a lot of
crews and airplanes are in the wrong place. What we need is a way to put
that whole operation back together again, so that the crews and airplanes
are in the right place. That way we minimize the cost of the disruption and
minimize the passenger inconvenience. [Ref. 12]

4, UH-1 Helicopters

Kimberly S. Schenken, an operation research system analyst in the U.S. Army
Aviation System Command (AMSAV-BD), used linear programming to solve this
problem associated with the engine for the UH-1 helicopter [Ref. 20].

"In making decisions, the U.S. Army had conflicting goals:
(1) Minimize Total Life Cycle Cost. Minimizing total life cycle cost

means minimizing the investment cost and the operating and support costs. However,
there may be a conflict between minimizing investment costs and operating and support
costs. The least expensive engine was probably not the least expensive to operate and

support.
(2) Maximize Performance of the Engine. The U.S. Army wanted the

highest performance engine since such an engine would increase the war fighting
capability of the aircraft. Also, it would increase crew safety and avert possible loss as

increased reserve engine power decreases the risk of crash and possible loss of life and

property".
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Reference 18 describes in detail the nature of the problem, the goals and trade-off
involved in its possible solutions. It demonstrates how goal programming was useful in
bringing order to the decision making process so all important aspects of the problems
were considered. The reference also discusses the limitations of goal programming and
the problems encountered in formulating the problem. By applying linear programming
the U.S. Army expects to reduce the helicopter engine’s total life cycle costs from
$5,179,676 to $4,416,296 [Ref. 21].

F. SUMMARY

This chapter has presented the background theory needed for subsequent discussion
of applying linear programming to Indonesian Air Force aircraft maintenance activities.
After determining the benefit desired, the objective function can either be maximized or
minimized. In civilian firms, the linear programming model is used to maximize profit
or minimize the cost of labor or other scarce resources. In military organizations the
model should optimize readiness or minimize life cycle costs. Some examples of real
world problems in both civilian and military aviation were presented. Those examples
show that linear programming can help a decision maker to make the best possible use
of available resources. See Appendix A for two additional examples of linear

programming applications in non-aviation organizations.
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III. A LINEAR PROGRAMMING EXAMPLE

This chapter presents an example of applying the linear programming approach to
an avionics maintenance problem. The application begin with a model formation and ends
with a sensitivity analysis of the optimal solution. This chapter also suggests potential
systems in the Indonesian Air Force avionics maintenance organizations which would

benefit from the implementation of linear programming.

A. THE EXAMPLE

1. The Maintenance Problem

The main reason for selection of the area of avionics maintenance for analysis of
linear programming benefits is based on the fact that there are large numbers of electronic
and avionics equipment that are repaired each year. These numbers will increase even
further in the next five years because of the recent purchase of a large number of new
transport and fighter aircraft by the Indonesian Air Force. In addition, very limited
resources must be allocated among the various products that Avionics Shops produce.

The Avionics Shop’s overall objective is to maximize readiness (given that a
specified amount of avionics equipment must be produced, how much money can be
saved). The amount of money that can be saved typically is the difference between the
cost of one piece of equipment being repaired outside under a maintenance contract and
the cost of repairing it by the Air Force’s maintenance organization. A maintenance
contract costs more per unit repaired than if it is done in-house by the Air Force’s
maintenance organization.

This organization’s primary mission is to maintain and repair highly technical
products, communication, airborne radar, and guidance equipment. This equipment is used
to support fighter and transport aircraft. Each piece of equipment that is repaired in the

Air Force’s avionics maintenance operation must pass through the following steps:
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« Receiving/physical inspection and writing up a work order (Phase 1).

+ Pre-inspection and fault diagnosis using ATE (Automatic Test Equipment)

(Phase 2).
» Repair (Phase 3).

+ Final inspection (Phase 4).

» Documentation is part of the phases 1,2,3 and 4. Shipping consists of a user or
the air base picking up the repaired equipment from the avionics maintenance

shops, so it can be ignored in the model to developed.

The flow chart of the avionics maintenance process is diagrammed as Figure 1.

FROM

—

USER

TO

USER

PHASEI
Receiving

Physical
Inspection

Documentation

Shipping

PHASEII

Pre-inspection

m—

E—
—

PHASE IV
Final Inspection

—

PHASE II

Servicing
Repairing
Modifying

Alignment

The time required (in hours) for repairing a unit of avionics equipment is

Figure 1. Flow Chart of Maintenance Operations.

summarized in Table 2.

The capacity available in the maintenance shops available (in hours per year) for
each Phase and the minimum annual production requirement to fulfill the Air Force’s

operational requirements are shown in Table 3. The details the capacity determinations

are given in Appendix D.
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Equipment Phase 1 Phase 2 Phase 3 Phase 4
Comm 25 25 5 75
Nav 25 25 6 75
Airborne 25 .50 7 1.5
Radar
Guidance 25 .50 8 1.5

Table 2. Time Required For Repairing of Each Unit of Equipment (hours).

Phase Annual Capacity Product Min Annual
(hours) Production (units)
1 1,540 Communication 236
2 770 Navigation 205
3 52,360 Airborne Radar 155
4 770 Guidance 144
System

Table 3. The Capacity Hours Available and the Minimum Production

Required Per Year.

2. Maintenance Contract Costs

Before the Air Force avionics maintenance facilities were established, the Indonesian

Air Force had avionics equipment repaired outside the Air Force through a maintenance

contract with a private vendor. However, it took more "turn around time" (from delivery
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until return of the equipment) to have equipment repaired and was more expensive than
the Air Force considered acceptable. Based on rough data during last few years of
contracting (1995-1991), the average cost of a "maintenance contract” for each type of

equipment can be summarized as shown in Table 4.

Equipment Average
Communication $ 4,750
Navigation $ 4,750
Airborne Radar $ 8,000
Guidance System §$ 24,000

Table 4. Average Cost of "Maintenance Contract" for Each Unit of Equipment.

3. The Air Force’s Maintenance Costs
During the ten years of the existence of avionics maintenance in the Air Force, it

has repaired a lot of avionics equipment. Having the Air Force perform the maintenance

has some advantages:
o Less turn around time;

+ Reduced maintenance cost; and

+ Increased personnel knowledge.
The equipment being repaired requires spare parts (bits and pieces and modules) to
replace the unserviceable components. The cost of spare parts and labor needed for each

type equipment being repaired varied depending on the nature of the failures. Based on

my experience, the average total cost (spare parts’ cost and labor cost) of the avionics
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equipments are given in Table 5 and are rough estimates using data from 1985-1991 [Ref.
19,22].

Equipment Average
Communication $ 1,500
Navigation $ 1,250
Airborne Radar $ 2,250
Guidance System $ 7,750

Table 5. Average Cost of the Repair of Each Unit of Equipment by the Air Force.

B. FORMULATING THE PROBLEM

1.  Building the Model
To formulate the linear programming problem we next apply the steps that were
described in Chapter II.
a. Step I - Define Activities
The four activities in the Air Force’s maintenance operation are:
+ Repair communication equipment (measured in units per year).
+ Repair navigation equipment (measured in units per year).
+ Repair radar equipment (measured in units per year).

+ Repair guidance equipment (measured in units per year).

Similarly, the four activities in a maintenance contract are:
+ Repair communication equipment (measured in units per year).
+ Repair navigation equipment (measured in units per year).
+ Repair radar equipment (measured in units per year).

+ Repair guidance equipment (measured in units per year).
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b. Step 2 - Define the Item set
These can be readily deduced from Figure 1 and Table 2.

+ Capacity in receiving, visual check, and work order (measured
in hours)

« Capacity in pre-inspection check (measured in hours)
« Capacity in the repair process (measured in hours)
» Capacity in final check (measured in hours)
+ Cost (measured in dollars)
c. Step 3 - Input-Output Coefficients
Input-output coefficients for the four activities are shown in Figure 2 through
9. These are obtained, input, from Table 2, Table 3, and Table 4. Note that contracting

activities do not consume any Air Force maintenance capacity in doing repair.

[ .25 Hours of Receiving Capacity >

I .25Hours of Pre-inspection Capacit}> Repalr Process for

One Unit of ‘
HEC N Communication |
: ‘ : Equipment One Repaired
| 5 Hours of Repair Capacity Unit of
Communication
Equipment

.75 Hours of Final Inspection Capaci>

Figure 2. Repair Process for One Unit of Communication Equipment.

d. Step 4 - Exogenous Flows

Since the capacities in each of the four phases (receiving, pre-inspection,
repair, and final inspection) are inputs to each of these activities, they must be inputs to
the system as a whole. The total required output from repair are exogenous flows
corresponding to the number of units needed to be output from each activity. Table 3

provides values for both these types of exogenous flows.
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] .25 Hours of Receiving Capacity

[ .25 Hours of Pre-inspection Capacil

ty> Repair Process for

One Unit of ‘
[s1250 Navigation : >
Equipment .
- - One Repaired
[ﬁlours of Repair Capacity > Unit of
Nav?gnﬁon
[ .75 Hours of Final Inspection Capacity > Equipment

Figure 3. Repair Process for One Unit of Navigation Equipment.

mﬂours of Receiving Capacity >

— . Repair Process for
[ .50 Hours of Pre-inspection Capacity

One Unit of .
[s22% 4> Airborne Radar :>
Equipment )
l?Hours of Repair Capacity > quip One Repaired
Unit of
Airbomne Radar
|1.5 Hours of Final Inspection Capacitt} Equipment

Figure 4. Repair Process for One Unit of Airborne Radar Equipment.

e. Step 5 - Material Balance Equations

The first step is to assign an unknown activity level to each activity.

X, = Number of units of communication equipment repaired by the Air
Force per year,

X, = Number of units of navigation equipment repaired by the Air Force

per year;
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| .25 Hours of Receiving Capacity >
— . Repair Process for
I .25 Hours of Pre-inspection Capacity
One Unit of ‘
(37,75 4> Guidance System —: >
Equipment :
- p One Repaired
[ 8 Hours of Repair Capacity > Unit of
Guidance System
|1.5 Hour of Final Inspection Capa@ Equipment

Figure 5. Repair Process for One Unit of Guidance System Equipment.

Maintenance Contract

Repair Process for

One Unit of ‘
$ 4,750 > Communication :>
Equipment One Repaired
Unit of
Communication
Equipment

Figure 6. Repair Process for One Unit of Communication equipment (Contract).

X, = Number of units of airborne radar equipment repaired by the Air Force
per year;

X, = Number of units of guidance system equipment repaired by the Air
Force per year;

X5 = Number of units of communication equipment repaired by contract per

year;
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Maintenance Contract

Repair Process for

$4,750
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One Repaired
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Figure 7. Repair Process for One Unit of Navigation Equipment (Contract).

Maintenance Contract

~ Repair Process for
One Unit of

$ 8,000

> Airborne Radar
Equipment

—

One Repaired
Unit of
Airborne Radar
Equipment

Figure 8. Repair Process for One Unit of Airborne Radar Equipment (Contract).

Number of units of navigation equipment repaired by contract per

year;

Number of units of airborne radar equipment repaired by contract per

year; and

Number of units of guidance equipment repaired by contract per year.
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Equipment

Figure 9. Repair Process for One Unit of Guidance Equipment (Contract).

Next, we write material balance equations. Since we may not use up the available
hours of phase capacity and we may exceed production minimums, we will write the
balance equations in inequality form. For the receiving, visual check, and work order
phase we get

25X, + 25X, + .25X; + .25X, < 1540 hours.

The "pre-inspection check" constraint is:

25X, + 25X, +.50X, + .50X, < 770 hours.
The "repairing " constraint is:

5X, + 6X, + 7X, + 8X, < 52,360 hours.
The "final inspection" constraint is:

75X, + 75X, + 1.5X, + 1.5 X, < 770 hours.

Next, we write the output constraints. As noted above, the constraints on the numbers of
avionics equipment which are to be repaired per year are also in the inequality form.
The "communication repair" constraint is:

- X, - X5 < - 236 units.

The reason for all the minus signs is that outputs are being considered only and the

convention given by Reference 6 is that outputs have a minus sign in the material balance
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equations and that inputs have a plus sign. We will later change these signs by
multiplying both sides by -1.
The "navigation repair" constraint is:
- X, - X¢ < - 205 units.
The "airborne radar repair" constraint is:
- X, - X; £ - 155 units.
The "guidance system repair" constraint is:
- X, - X, < - 144 units.
Finally, the objective function is the material balance of costs input to each activity.
1500x, + 1250%, + 2250x, + 7750x, + 4750x, + 4750x, + 8000x, + 24250x, = + Z.
We let Z denote the unknown total cost. Our interest is in finding a feasible solution
which minimizes the value of Z. Finally, we need to specify that no activity level is
allowed to be negative.
Therefore, X, 20,X,20,X,20,X,20,
X;20,X,20,X,20,X%;20.
This completes the model formulation.
f. Step 6. The Problem Statement
The linear programming model has been completely formulated and the
problem can now be formally stated as: Find values of X, X,, X;, X,, X;, X;, X;, and X,
which
Minimize Z = 1500X, + 1250X, + 2250X, + 7750X, + 4750X; + 4750X, +
8000X, + 24250X,
subject to:
25X, +.25X, + .25X, + 25X, < 1540
25X, + .25X, + .50X, + .50X, < 770
5X, + 6X, + 7X; + 8X, < 52360
TI5X, +.75X, + 1.5%, + 1.5X, < 770
X, + X, 2236
X, + X, 2 205
X, + X, 2155
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X, + X, = 144
X, X%, Xy Xy Xs» Xe s X, X 2 0.

C. OPTIMAL SOLUTION AND ANALYSIS

This section presents the solution and sensitivity analysis of the linear programming
problem of the avionics maintenance operations of the Air Force that was formulated in
Section C. ABQM software was used to solve the problem. The user is required to enter
the data, decision variables, objective function, and model constraints into the program.
ABQM software then uses the simplex method to solve the problem.

1.  Solution

Appendix B shows the ABQM software required inputs and program outputs for the
problem formulated in the preceding section. The optimal solution of the linear
programming is listed below. Appendix B provides this solution at the bottom of the first
page and top of the second page.

X, = 236 units,

X, = 205 units,

X; = 148.833 units,
X, = 144 units,

X, = 0 units,

X¢ = 0 units,

X, = 6.167 units,
X, = 0 units, and

Z=13$2,110,458.333,

where:
X, = Number of units of communication equipment repaired by the Air
Force per year.
X, = Number of units of navigation equipment repaired by the Air Force

per year.
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X, = Number of units of airborne radar equipment repaired by the Air

Force per year.

X, = Number of units of guidance equipment repaired by the Air Force
per year.

X, = Number of units of communication equipment repaired by contract.

Xs = Number of units of navigation equipment repaired by contract.

X, = Number of units of airborne radar equipment repaired by contract.

X; = Number of units of guidance equipment repaired by contract.

Finally,

Z = The total cost of the maintenance (by the Air Force and by contract)

per year.

In the optimal solution the value of X, is greater than zero. It means the Air Force
has to "contract out" for repair of communication equipment. This is because there is
insufficient capacity in the final inspection phase. Constraint C, is the only constraint in
phase capacity which is binding. The table in the middle of the second page of Appendix
B shows that its slack variable is zero. Constraints C,, C,, and C, are not binding since
the values of their slack variables are 1356.542, 513.333, and 47756.167, respectively.
Finally, constraints Cs, C,, C,, and C; are binding since their slack variables are zero.

Decision variables X, through X,, and X, are the basic variables (their values are
positive) and X, X,, and X, are non-basic variables (their values are zero) in this optimal
solution.

2.  Analysis

Both a sensitivity analysis and duality analysis are also provided in Appendix B.

a. Sensitivity Analysis
(1) Objective function coefficient ranges. Ranges are provided at the
bottom of the second page of Appendix B. The objective coefficient range for X,
(airborne radar equipment) is from $1,500 to $8,000. The current value is $2,250 so the
allowable increase is $5,750 and allowable decrease is $750 before the optimal solution
would change. However, the objective function value changes linearly if the cost

coefficient for X, changes based on the optimal value of X;. For example, if the objective

35




function’s cost coefficient for X, changes from $2,250 to $2,249, the objective function
value will change from $2,110,458.333 to $2,110,309..5, a difference of $148.833 since
X,’s value is 148.33 and its cost coefficient was reduced by one unit.

The current value of X, is 236, and its cost coefficient’s allowable
increase is $375, and the allowable decrease is $4,375. If, for example, the cost coefficient
for X, changes from $1,500 to $1,449, the value of the objective function will be reduced
by $236.

The current value of X, is 205, its cost coefficient is $12,250. The
allowable increase in the cost coefficient is $625 and its allowable decrease is $4,125. If
the cost coefficient for X, changes from 2,250 to 2,249, the objective function value will
be reduced by $155.

The current value of X, is 144 and its cost coefficient’s allowable increase
is $10,750 and allowable decrease is $13,500 If the cost coefficient for X, changes from
$7,750 to $7,749, the value of the objective function will be reduced by $144.

The current value of X, is 6.167 and its cost coefficient’s allowable
increase and decrease are $750 and $5,750, respectively. If the cost coefficient for X,
changes from $8,000 to $7,999, the value of the objective function will be reduced by
$6.167. ‘

The remaining variables, X;, X, and X, all are currently zero. Thus, any
change in their cost coefficients will not change the value of the objective function.
However, if any of the cost coefficients are reduced below the allowable decrease, then
a new optimal solution will result which will include the variable who cost coefficient has
been so reduced. Notice that the optimal solution table shows a column called "Reduced
Costs." The reduced costs are zero for X, through X,, and X, meaning any cost coefficient
change will result in a change in the objective function value. The reduced costs for X,
Xy, and X, are identical to the allowable decrease values.

In summary, this analysis shows that if we change the cost coefficients
within the allowable increase and decrease range of values for the positive decision
variables the objective function value will change. However, no change will result from

changing the cost coefficients for the decision variables which are zero. If we change any

36




cost coefficients beyond the allowable increase and decrease range, the optimal solution
will change and so will the value of the objective function.

(2) Right hand side ranges. The capacity constraints are labor hour
constraint (constraints 1 through 4). The next four constraints are lower bounds or the
number of units required to be repaired each year to meet readiness goals. We already
know from the table following the optimal solution that the first three capacity constraints
are slack and the rest of the constraints have no slack (are binding). Therefore we can
reduce the right-hand side values of the first three constraints by the amount of the slack
variables before the optimal solution will change. On the other hand, any change in the
right-hand side values of the binding constraints will result in a change in the optimal
solution. When we examine the table called "Right Hand Side Ranges" which is at the top
of the third page in Appendix B, we see that allowable decreases for the first three
constraints are exactly equal to the slack variable values. What about the information in
that table for the binding constraints (those which aren’t slack)? The information tells us
how much the right-hand side value for any binding constraint will need to change before
a new optimal basic feasible solution will replace the current one. Any change of less
value will only result in changes in the values of the current basic variables.

b. Duality Analysis

In Chapter III we discussed the relationship between the primal and dual
models and said that the solution to the dual gives us an indication of the marginal change
in the optimal objective function value of the primal problem for a unit change in the
right-hand sides of the constraints. The ABQM software provides this information as part
of the output. For our problem the table in the middle of the second page of Appendix
B not only gives the values of the slack variables for each constraint but also the solution
to the dual problem which we referred to in Chapter III as the "shadow prices." From this
table in Appendix B we see that the first three constraints have zero shadow prices.
Therefore, a unit change in any of their right-hand side values will result in no change in
the optimal solution and, as a consequence, no change in the objective function value.
Constraints C, through Cg, on the other hand, are binding and any change in the right-

hand sides will result in a change in the optimal solution. An estimate of the impact of
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a unit change in any right-hand side value on the value of the objective function is
provided by the shadow prices. For example, if the right-hand side of the constraint C,
is reduced from 770 to 769, the optimal value of the objective function is expected to
increase by $3,833.33. Similarly, if it is increased from 770 to 771, the objective function
value is expected to decrease by $3,833.33. Since this constraint has 770 as its upper
bound, an increase to 771 is less restrictive than 770 and therefore a cost reduction is
expected.

For constraints C; through C,, the right-hand values are lower bounds.
Reducing any one of those bounds will therefore result in a marginal reduction in the
objective function’s value and any increase will increase the objective function’s value.
For example, if the right-hand side of constraint C; is decreased from 236 to 235, the
marginal reduction in the objective function is $4,375 (the shadow price is -4,375) while
an increase on the right-hand side value from 236 to 237 is expected to increase the
objective function’s value by $4,375. The biggest marginal improvement in the objective
function occurs for a decrease in the right-hand side value of constraint C,. If its value
is reduced from 144 to 143, then marginal change in the objective function will be a
decease of $13,500. Thus, in attempting to determine which right-hand side values are
critical, it is sufficient to look at their shadow prices. The ones that are critical should
then be reviewed to see if they are accurate or can be changed to reduce the optimal total
costs.

The shadow prices do not say how much of a change in a right-hand side is
possible before the marginal savings are no longer valid. How the basic variables’ values
change for even a one unit change in the right-hand side is not provided by the shadow
prices. To find out how these variables’ values change requires resolving the problem with
the change in the right hand side. Appendix C illustrates the results when a unit change

is made to the right-hand side of constraints C, through C,.
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D. BENEFIT OF A LINEAR PROGRAMMING APPROACH IN THE AIR

FORCE ‘

The primary usefulness of the linear programming approach in the Indonesian Air
Force is that it clearly highlights the trade-offs involved in the decision making and
suggests many possible solutions rather than just one solution. It allows tradeoff analyses
to be made of what maintenance activities to do "in house" and which to "contract out.”
For example, in the optimal solution of the example, it shows that Air Force should repair
236 units of communication equipment, 205 units of navigation equipment, 148.833 (149)
units of airborne radar equipment, and 144 units of guidance equipment "in house", and
"contract out" 6.167 (6) units of communication equipment. The technique also allows us
to demonstrate the robustness of an optimal solution in problem immediately. For
example, if you are considering changing the cost coefficient for repairing a unit of
equipment, or you are considering changing the right-hand side value of a constraint, you
can quickly determine if it will have an effect on your optimal solution.

Disadvantages of the technique are that the technique is fairly complex. The quality
of the answer is dependent on the quality of the formulation and input values of the
parameters. Also, there is the danger of the problem being over simplified in order to
remain manageable.

The advantages would allow the Air Force to develop its maintenance organization
strategically in order to become the center of excellence of the Air Force. On the other
hand, the disadvantages should compel the Air Force to pay attention to the formulation
of the model. The Air Force will need good data on parameter values to build the model.
One possible way to gather such data precisely and quickly is to design a maintenance
management data collection system.

1. Maintenance Management System

Maintaining equipment history is an important part of a maintenance system, as is
a record of when, the time it took, and the cost to make the repair. The United States
Navy has such a system. It is called the Depot Maintenance Data System.

Preventative maintenance implies that we can determine when a system needs

service or will need repair and modification. Corrective maintenance, on the other hand,
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is the result of unpredictable failures. Therefore, we have to define when a system
requires planned service or when it is likely to fail. We also need to know how much of
our depot resources are consumed for each type of maintenance.

Figure 10 shows the major components of a computer-based maintenance
management system. Such a system would provide a decision maker with information
and inputs for a linear programming model for strategic planning. The system would
provide information for inventory management, ordering repair parts or a PERT chart for
planning a major aircraft overhaul. The system would also provide the data from which
to generate the input-output coefficients needed for building a linear programming model.

2.  Future Development

By implementing linear programming modeling in the avionics maintenance
organization, the Air Force could identify the significant sources of cost per year and it
would allow the Air Force to identify where it needs to spend more to increase limited
capacity. Avionics maintenance is a military organization requiring huge investments in
the Air Force (such as facilities or training personnel). More efficient Air Force
maintenance planning will contribute not only to improved defense readiness, but also to
national development.

For example, perhaps the Air Force’s maintenance facilities will be able to repair
avionics equipment not only for the Air Force, but also for Indonesian Aircraft Industry

(IPTN), private sector organizations, or the air forces of other Asian countries.

E. SUMMARY

This chapter has presented a discussion of a linear programming example such as
might be encountered in aircraft maintenance strategic planning. It spelled out the
formulation steps and discussed the optimal solution and sensitivity analysis of the
solution. It then extended these basic concepts to a discussion of linear programming’s
advantages and disadvantages and the problems of gathering data to use in a real world

model.

40




Equipment File
. with Parts List '

Repair History
File

Inventory of
. Spare Parts '

Personnel Data witl

. Skills, Wages, ete. l

(Actual vs.
/ snmlu'd)

Data Entry
-Work Requests
-Purchase Requests

' -Time Reporting
l - -Contract Work
/___- R — :_\ -Update Sundry Files

Y Inventory and

Purchasing
e I | S T Reports/
—— ——
- —— Equipment
: : / %

Equipment
History Reports

o~

.

Cost Analysis

Computer

Work Orders
-Preventive
Maintenance
-Scheduled
Down Time
-Emergency
Maintenance

/

Figure 10.

A Typical Computer-based Maintenance Management System [Ref.
12].
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IV. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY

This thesis has presented the background for a proposed implementation of linear
programming in the Indonesian Air Force. The objectives and scope of the thesis were
discussed in Chapter 1. Chapter II presented the theory needed for subsequent discussion
énd the application of linear programming to Indonesian Air Force avionics maintenance
activities. After determining the benefit desired, the objective function of linear
programming can be either maximized or minimized. As we already know in military
organizations the linear programming model should optimize readiness or minimize the
life cycle costs. Also we presented some examples of real world problems in both civilian
and military aviation organizations. Chapter III presented a linear programming example
problem in avionics maintenance activities. Chapter III provided the formulation steps
and a discussion of the optimal solution and sensitivity analysis of that solution. Chapter
III also extended the basic concepts of linear programming to a discussion of linear
programming’s advantages and disadvantages. Finally, a computer-based management
data collection system was suggested to gather the input data required for model

formulation.

B. CONCLUSIONS

Although the example considered in this thesis is naive, it does suggest that
linear programming might be a useful tool for planning of maintenance activities by the
Indonesian Air Force. Linear programming is designed to solve large complex constrained
resource problems for the optimal activity levels which will minimize total costs or
maximize total profit over a specified time period. The resource constraints and the
objective function must be able to be described as linear functions of the unknown activity
levels. Linear programming also assumes that the world is deterministic (i.e., any
stochastic influences are assumed to be negligible). Fortunately, there are enough real

world problems which can be solved in spite of these somewhat limiting assumptions that
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there are many software papckages available to quickly solve such problems and provide

sensitivity analyses of how good the optimal solutions are.

C. RECOMMENDATIONS

Reports of successful linear programming application abound in the literature. Some
of these are briefly described at the end of Chapter II and in Appendix A. Others are
listed in the Bibliography. Before attempting any application of the linear programming
approach these references should be carefully read and understood. In addition, there are
undoubtedly some successful applications in the private sector in Indonesia. These need
to be sought out and studied.

Modeling help will be needed and can be provided by people who are experts in
linear programming and its applications. This author does not happen to be one of them.
However, there are faculty members in Operations Research, Mathematics, or Industrial
Engineering Departments in Indonesia’s major universities, such as Indonesian University
(UI), Institute of Technology Bandung-(ITB), and Sekolah Teknologi Tinggi Angkatan
Laut (STTAL), who can provide assistance and guidance.

A computer-based depot level maintenance management system must be developed
to provide the data needed for inputs to linear programming problems. Such systems exist
in the United States in both the Air Force and the Navy as well as in the major airlines.
These should be studied in detail as a starting point for the development of such a system
for the Indonesian Air Force. Again, expert assistance will be needed from universities

or private sector corporations which already have such systems.
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APPENDIX A. TWO EXAMPLES OF LINEAR PROGRAMMING
APPLICATION IN THE AREAS NOT RELATED TO AVIATION

A. CABINET MANUFACTURING

A linear programming model revealed that Cabinet, Inc. can save about $412,000

in raw material cost by purchasing more lower-grade lumber. The company developed a
linear programming model of its blank production system. It was structured to minimize
the total cost of producing blanks for typical five-day week of operation. The company
chooses a five-day planning horizon because it represents the normal cutting cycle of the
rough mill; that is, all blank sizes are cut at least once during that period. The constraints
include the capacities of the saw mill and dry kilns, the required output of blanks at the
manufacturing plant, and the available supply of raw materials. The linear programming
problem was:
Minimize the total cost of producing blanks;
subject to:

+ Sawmill Capacity

* Drying Capacity

» Weekly Requirements

» Log Supply

* Lumber Supply

Prior to the completion of the model analysis, the company was unable to accurately

determine its cost of solid wood raw material. Now the company is able to enter projected
procurement conditions and use the results to minimize its cost to produce hardwood
blanks. The company feels that the system will give it an advantage in the very

competitive cabinet market and allow the company to continue to grow [Ref. 3].

B. CANADA SYSTEMS GROUP

A linear programming model helps the Financial Services Groups division of

Canada Systems Group, Incorporated, to cope with the seasonal surge in processing
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demand for the registered retirement savings program (RRSP, a particular retirement
savings plan offered by Canadian Services Groups clients who are fund management
companies). During the early part of 1985, the Financial Services Group began to plan
its manpower needs for the upcoming surge in transaction processing demand (notifying
all parties involved with each fund transaction) of the popular and growing registered
retirement savings program. The development of a model and its careful implementation
produced, in spite of a 25 percent increase in volume, a savings of over $300,000 over

a six-week period as compared to the previous year. [Ref. 24]
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APPENDIX B. SOLUTION OF THE PROBLEM

A. SOLUTION OF PRIMAL PROBLEM

This appendix shows the required inputs to the ABQM software and resulting output from
solving the linear programming problem of the Air Force’s maintenance operation. The
outputs include the optimal solution, a sensitivity analysis of it, and the duality analysis
of it.
Program: Linear Programming
Problem Title : Avionics Maintenance Operation
#xk%% Input Data *****
Min. Z = 1500x1 + 1250x2 + 2250x3 + 7750x4 + 4750x5 + 4750x6 + 8000x7
+ 24250x8
Subject to
Cl  .25x1 + .25x2 + .25x3 + .25x4 <= 1540
C2 .25x1 + .25x2 + .50x3 + .50x4 <= 770
C3 5x1 +6x2 + 7x3 + 8x4 <= 52360
C4 .75x1 +.75x2 + 1.50x3 + 1.50x4 <= 770
C5 Ixl + 1x5 >= 236
C6 1x2 + 1x6 >= 205
C7 1x3 + 1x7 >= 155
C8 1x4 + 1x8 >= 144
**%k%* Program Output *****
Final Optimal Solution At Simplex Tableau : 5
Z =2110458.333

Variable Value Reduced Cost
x 1 236.000 0.000
X2 205.000 ~0.000
x3 148.833 0.000
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x 4
x5
x6
x7
x8

144.000
0.000
0.000
6.167
0.000

0.000
375.000
625.000

0.000
10750.000

Constraint Slack/Surplus

Cl1
C2
C3
C4
C5S
Cé6
c7
C8

Shadow Price

1356.542 0.000
513.333 0.000
47756.167 0.000
0.000 3833.333
0.000 -4375.000
0.000 -4125.000
0.000 -8000.000
0.000  -13500.000

Objective Coefficient Ranges

Lower  Current Upper Allowable Allowable
Variables  Limit Values Limit Increase Decrease

x1 -2875.000 1500.000 1875.000 375.000 4375.000
x2 -2875.000 1250.000 1875.000 625.000 4125.000
x3  1500.000 2250.000 8000.000 5750.000  750.000
x4 -5750.000 7750.000 18500.000 10750.000 13500.000
x5  4375.000 4750.000 No limit No limit 375.000
x 6  4125.000 4750.000 No limit No limit  625.000
x 7 2250.000 8000.000 8750.000  750.000 5750.000
x 8 13500.000 24250.000 No limit No limit 10750.000
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Right Hand Side Ranges

Lower  Current Upper Allowable Allowable

Constraints Limit Values Limit Increase Decrease

Cl 183.458 1540.000 No limit No limit 1356.542
C2 256.667  770.000 No limit No limit  513.333
C3  4603.833 52360.000 No limit No limit 47756.167
C4 546.750  770.000  779.250 9.250  223.250
C5 223.667  236.000  533.667  297.667 12.333
Cé6 192.667  205.000 502.667  297.667 12.333
c7 148.833  155.000 No limit No limit 6.167
C8 137.833  144.000 292.833  148.833 6.167

3 3k 3% ok %k End Of Output ok ok % 3% %k
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APPENDIX C. SHADOW PRICE TEST (RIGHT-HAND SIDE CHANGE)

A. CONSTRAINT C; CHANGE

This section shows the effect of reducing the requirement by one unit for the annual
repair of communication equipment (right-hand change) and the resulting improvement
in the objective function (reduced total cost). The new optimal solution has only X,
reduced from 6.167 to 5.667 (i.e., one-half less piece of airborne radar equipment is
repaired through a contract), and X, increased from 148.833 to 149.333 (i.e., one-half
more piece of airborne radar equipment is repaired in house). The objective function value
decreases by $4,375 (from $2,110,458 to $2,106,083). The decrease is exactly equal to
the constraint’s shadow price.

Maintenance Operation

Program: Linear Programming

Problem Title : Maintenance Operation

#44k% oyt Data *****

Min. Z = 1500x1 + 1250x2 + 2250x3 + 7750x4 + 4750x5 + 4750x6 + 8000x7
+ 24250x8

Subject to

Cl .25x1 + .25x2 + .25x3 + .25x4 <= 1540

C2 .25x1 +.25x2 + .50x3 + .50x4 <= 770

C3 5x1 + 6x2 + 7x3 + 8x4 <= 52360

C4 .75x1 + .75x2 + 1.50x3 + 1.50x4 <= 770

C5 1x1 + 1x5 >= 235

C6 1x2 + 1x6 >= 205

C7 1x3 + 1x7 >= 155

C8 1x4 + 1x8 >= 144

2% % sk %k % Program Output sk % %k 3k %k

Final Optimal Solution At Simplex Tableau : 5

Z =2106083.333
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Variable Value Reduced Cost

x1 235.000 0.000
X2 205.000 0.000
x3 149.333 0.000
x 4 144.000 0.000
X5 0.000 375.000
X6 0.000 625.000
x7 5.667 0.000

x8 0.000 10750.000

Constraint Slack/Surplus Shadow Price

Cl1 1356.667 0.000
C2 513.333 0.000
C3 47757.667 0.000
C4 0.000 3833.333
C5S 0.000 -4375.000
Céo 0.000 -4125.000
c7 0.000 -8000.000
C8 0.000  -13500.000

Objective Coefficient Ranges

Lower  Current Upper Allowable Allowable

Variables Limit Values Limit Increase Decrease

x 1 -2875.000 1500.000 1875.000  375.000 4375.000
x 2 -2875.000 1250.000 1875.000  625.000 4125.000
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x 3  1500.000 2250.000 8000.000 5750.000  750.000

x4 -5750.000 7750.000 18500.000 10750.000 13500.000

X5 4375.000 4750.000 No limit No limit 375.000

x 6  4125.000 4750.000 No limit No limit 625.000

x7 2250.000 8000.000 8750.000  750.000 5750.000

x 8 13500.000 24250.000 No limit No limit 10750.000
Right Hand Side Ranges

Lower  Current Upper Allowable Allowable

Constraints Limit Values Limit Increase Decrease

Cl 183.333  1540.000 No limit No limit 1356.667
C2 256.667  770.000 No limit No limit = 513.333
C3  4602.333 52360.000 No limit No limit 47757.667
C4 546.000  770.000  778.500 8.500  224.000
C5 223.667  235.000  533.667  298.667 11.333
Cé6 193.667  205.000 503.667  298.667 11.333
c7 149.333  155.000 No limit No limit 5.667
C8 138.333  144.000  293.333  149.333 5.667

***x* End of Output *****

B. CONSTRAINT C; CHANGES

This section shows the effect of reducing the requirement by one unit for the annual
repair of navigation equipment (right-hand change) and the resulting improvement in the
objective function (reduced total cost). The new optimal solution have X; reduced from
6.167 to 5.667 (i.e., one-half less piece of airborne radar equipment is repaired through
a contract), and X, increased from 148.333 to 149.333 (i.e., one more piece of airborne
radar equipment is repaired in house). The objective function value decreases by $4,125
(from $2,110,458.333 to $2,106,333.333). The decrease is exactly equal to the constraint’s

shadow price.
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Program: Linear Programming

Problem Title : Indonesian Air Force’s Maintenance Operation

e o ok ok %k Input Data % % % % %

Min. Z = 1500x1 + 1250x2 + 2250x3 + 7750x4 + 4750x5 + 4750x6 + 8000x7

Cl
C2

+ 24250x8
Subject to
25x1 + .25x2 + .25x3 + .25x4 <= 1540
25x1 + .25x2 + .50x3 + .50x4 <= 770

C3 5x1 +6x2 + 7x3 + 8x4 <= 52360
C4 .75x1 + .75x2 + 1.50x3 + 1.50x4 <= 770

C5
Cé
C7
C8

Ix1 + 1x5 >= 236
1x2 + 1x6 >= 204
1x3 + 1x7 >= 155
Ix4 + 1x8 >= 144

***** Program Output *****

Final Optimal Solution At Simplex Tableau : 5
Z =2106333.333

Variable Value Reduced Cost

x1 236.000 0.000
X2 204.000 0.000
x3 149.333 0.000
X 4 144.000 0.000
x5 0.000 375.000
X 6 0.000 625.000
x7 5.667 0.000

x 8 0.000 10750.000
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Constraint Slack/Surplus

Shadow

Cl1
C2
C3
C4
C5s
Cé6
c7
C8

1356.667
513.333

47758.667
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
3833.333
-4375.000
-4125.000
-8000.000
-13500.000

Objective Coefficient Ranges

Price

Lower  Current Upper Allowable Allowable
Variables  Limit Values Limit Increase Decrease

x 1 -2875.000 1500.000 1875.000 375.000 4375.000
X2 -2875.000 1250.000 1875.000 625.000 4125.000
x 3  1500.000 2250.000 8000.000 5750.000  750.000
x4 -5750.000 7750.000 18500.000 10750.000 13500.000
x5  4375.000 4750.000 No limit No limit 375.000
X6  4125.000 4750.000 No limit No limit 625.000
x7 2250.000 8000.000 8750.000  750.000 5750.000
x 8 13500.000 24250.000 No limit No limit 10750.000

Right Hand Side Ranges
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Lower  Current Upper Allowable Allowable

Constraints Limit Values Limit Increase Decrease

Cl1 183.333  1540.000 No limit No limit 1356.667
C2 256.667  770.000 No limit No limit  513.333
C3 4601.333 52360.000 No limit No limit 47758.667
C4 546.000  770.000  778.500 8.500  224.000
C5S 224.667  236.000  534.667  298.667 11.333
Co6 192.667 204.000  502.667  298.667 11.333
c7 149.333  155.000 No limit No limit 5.667
C38 138.333  144.000  293.333  149.333 5.667

ok % ¥ %k k End Of Output % ok ok %k %k

C. CONSTRAINT C, CHANGES

This section shows the effect of reducing the requirement by one unit for the annual
repair of airborne radar equipment (right-hand change) and the resulting improvement in
the objective function (reduced total cost). The new optimal solution have X, reduced
from 6.167 to 5.167 (i.e., one less piece of airborne radar equipment is repaired through
a contract). The objective function value decreases by $8,000 (from $2,110,458.333 to
$2,102,458.333). The decrease is exactly equal to the constraint’s shadow price.
Program: Linear Programming
Problem Title : Indonesian Air Force’s Maintenance Operation
**x%% [nput Data **¥**

Min. Z = 1500x1 + 1250x2 + 2250x3 + 7750x4 + 4750x5 + 4750x6 + 8000x7
+ 24250x8

Subject to

Cl .25x1 + .25x2 + .25x3 + .25x4 <= 1540

C2 .25x1 + .25x2 + .50x3 + .50x4 <= 770

C3 5x1 +6x2 + 7x3 + 8x4 <= 52360
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C4 .75x1 + .75x2 + 1.50x3 + 1.50x4 <= 770
C5 1x1 + 1x5>= 236
C6 1x2 + 1x6 >= 205
C7 1x3 + 1x7>=154
C8 1x4 + 1x8 >= 144

ok sk 3k % %k Prograrn Output % 3k % % %k
Final Optimal Solution At Simplex Tableau : 5
Z =2102458.333

Variable Value Reduced Cost

x1 236.000 0.000
X2 205.000 0.000
x 3 148.833 0.000
x4 144.000 0.000
x5 0.000 375.000
X6 0.000 625.000
x7 5.167 0.000

x 8 0.000 10750.000

Constraint Slack/Surplus Shadow Price

Cl 1356.542 0.000
C2 513.333 0.000
C3 47756.167 0.000
C4 0.000 3833.333
C5s 0.000 -4375.000
Cé6 0.000 -4125.000
c7 0.000 -8000.000
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C8

0.000

-13500.000

Objective Coefficient Ranges

Lower  Current Upper Allowable Allowable
Variables  Limit Values Limit Increase Decrease

x1 -2875.000 1500.000 1875.000 375.000 4375.000
x2 -2875.000 1250.000 1875.000  625.000 4125.000
x3  1500.000 2250.000 8000.000 5750.000  750.000
x4 -5750.000 7750.000 18500.000 10750.000 13500.000
x5 4375.000 4750.000 No limit No limit  375.000
x 6  4125.000 4750.000 No limit No limit  625.000
x7  2250.000 8000.000 8750.000  750.000 5750.000
x 8 13500.000 24250.000

Right Hand Side Ranges

No limit No limit 10750.000

Lower  Current Upper Allowable Allowable
Constraints Limit Values Limit Increase Decrease
C1 183.458 1540.000 No limit No limit 1356.542
C2 256.667  770.000 No limit No limit  513.333
C3 4603.833 52360.000 No limit No limit 47756.167
C4 546.750  770.000  777.750 7.750  223.250
C5 225.667  236.000  533.667  297.667 10.333
Cé6 194.667  205.000 502.667  297.667 10.333
C7 148.833  154.000 No limit No limit 5.167
C8 138.833  144.000  292.833  148.833 5.167

ok ok %k 5k %k End Of Output %k 3% ok %k %k
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D. CONSTRAINT C; CHANGES

This section shows the effect of reducing the requirement by one unit for the annual
repair of air guidance systems equipment (right-hand change) and the resulting
improvement in the objective function (reduced total cost). The new optimal solution have
X, reduced from 6.167 to 5.167 (i.e., one less piece of air guidance system equipment is
repaired through a contract), and X, increased from 148.833 to 149.833 (i.e., one more
piece of air airborne radar system equipment are repaired in house). The objective
function value decreases by $13,500 (from $2,110,458.333 to $2,096,958.333). The
decrease is exactly equal to the constraint’s shadow price.

Program: Linear Programming

Problem Title : Maintenance Operation

oxkxk nput Data *****

Min. Z = 1500x1 + 1250x2 + 2250x3 + 7750x4 + 4750x5 + 4750x6 + 8000x7
+ 24250x8

Subject to

Cl .25x1 + .25x2 + .25x3 + .25x4 <= 1540

C2 .25x1 +.25x2 + .50x3 + .50x4 <= 770

C3 5x1 +6x2 + 7x3 + 8x4 <= 52360

C4 .75x1 + .75x2 + 1.50x3 + 1.50x4 <= 770

C5 1xl + 1x5 >=236

C6 1x2 + 1x6 >= 205

C7 1x3 + 1x7 >= 155

C8 1x4 + 1x8 >= 143

*x%k%% Program Output *****

Final Optimal Solution At Simplex Tableau : 5

Z =2096958.333

59




Variable Value Reduced Cost

x1 236.000 0.000
X2 205.000 0.000
x3 149.833 0.000
x 4 143.000 0.000
X35 0.000 375.000
X6 0.000 625.000
x7 5.167 0.000

x8 0.000 10750.000

Constraint Slack/Surplus Shadow Price

Cl 1356.542 0.000
C2 513.333 0.000
C3 47757.167 0.000
C4 0.000 3833.333
C5S 0.000 -4375.000
Cé6 0.000 -4125.000
c7 0.000 -8000.000
C38 0.000  -13500.000

Objective Coefficient Ranges

Lower  Current Upper Allowable Allowable

Variables Limit Values Limit Increase Decrease

x 1 -2875.000 1500.000 1875.000  375.000 4375.000
x 2 -2875.000 1250.000 1875.000  625.000 4125.000
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x 3 1500.000 2250.000 8000.000 5750.000  750.000

x4 -5750.000 7750.000 18500.000 10750.000 13500.000

X5 4375.000 4750.000 No limit No limit  375.000

x 6  4125.000 4750.000 No limit No limit  625.000

x 7  2250.000 8000.000 8750.000  750.000 5750.000

x 8 13500.000 24250.000 No limit No limit 10750.000
Right Hand Side Ranges

Lower  Current Upper Allowable Allowable

Constraints Limit Values Limit Increase Decrease

Cl1 183.458 1540.000 No limit No limit 1356.542
C2 256.667  770.000 No limit No limit  513.333
C3 4602.833 52360.000 No limit No limit 47757.167
C4 545250  770.000  777.750 7.750  224.750
C5 225.667  236.000  535.667  299.667 10.333
Cé6 194.667  205.000  504.667  299.667 10.333
C7 149.833  155.000 No limit No limit 5.167
C38 137.833  143.000 292.833  149.833 5.167

***x% End of Output *****
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APPENDIX D. CALCULATION OF CAPACITY OF DEPOT LEVEL
AVIONICS MAINTENANCE ACTIVITIES

This appendix provides estimates of the capacity in the four phases of depot level
avionics maintenance performed by the Indonesian Air Force based on my experience
from 1985 to 1991. In this case we will calculate the capacity of each repair work station
based on an effective working-day.

» Monday - Thursday: 6 hours/day. x 4 days = 24 hours

 Friday 3.5 hours. x 1 day = 3.5 hours

» Saturday 3.5 hours. x 1 day = 3.5 hours
Total/hours/week = 31 hours. So, the average capacity for each test bench and work
station is 31 hours/week. If there are 52 weeks during year, then the hours/year = 31 x
52 = 1612 hours. However, there are 14 holidays during a year then the total holidays-
hours during a year = 31 hours/week x 2.33 (14 days = 2.33 weeks) = 72.33 = 72 hours
(rounding down). Therefore, the total available hours/year for each work station becomes
= 1612 hours - 72 hours = 1540 hours. Table 6 is a detailed capacity analysis of the work

stations involved in avionics maintenance.
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No DESCRIPTION TYPE QUANTITY OF CAPACITY
samons |
1. Communication Equipment
a. HF (High Frequency)
618T-1/2 1 1540
628T-2 1 1540
718U-5 2 3080
b. VHF (Very High Frequency)
618M-3 1 1540
VHF20() 1 1540
610F-1 1 1540
VHF253 1 1540
ARC-131 1 1540
c. UHF (Ultra High Frequency)
ARC159 1 1540
ARCI182 1 1540
d. Intercom
AIC-18 1 1540
AIC-10 1 1540
Total 20,020
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No DESCRIPTION TYPE QUANTITY OF CAPACITY
stamons |
2. Navigation Equipment
a.VHF Navigation
SIRV-() 1 1540
VIR-30() 1 1540
b. ADF (Automatic Direction Finder)
DF-206 2 3080
c. Altimeter
AL-101 1 1540
d. MarkerBeacon
51Z-4 1 1540
e. UHF/VHF DF (Direction Finder)
ARA-50 1 1540
DF-301 1 1540
Total 12,320
3. Airborne Radar Equipment
a. Weather Radar
RDR/400 2 3080
RDR-IF/E/FB 2 3080
b. Weather/Mapping Radar
AVQ30 1 1540
APQS59 1 1540

c. SLAMMR (Side Looking Airborne Multi-Mission Radar)

1

1540

Total

10,780
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No DESCRIPTION TYPE QUANTITY OF CAPACITY
stamons |
4. Guidance System Equipment
a. INS (Inertial Navigation System)
LTN-72 1 1540
b. ONS (Omega Navigation System)
CMA-740/771 2 3080
c. Compass System
C-12 1 1540
d. Autopilot
FCS-105 1 1540
e. GPWS
Mark-I1 1 1540
Total 9,240

Table 6. Detailed Capacity of Work Stations Used for Avionics Depot Level

Repair.

So that, the total capacity (measured in hours per year) of the depot level avionics work

stations per year is:

1. Communication 20,020 hours/year
2. Navigation 12,320 hours/year
3. Airborne Radar 10,780 hours/year
4. Guidance System 9,240 hours/year

Table 7. Total Capacity of Repair Work Stations Per Year.
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Therefore the total capacity for the repairing process is about 52,360 hours (20,020
+ 12,320 + 10,780 + 9,240). It is important to note that it may actually be less because
the repair technicians are required for other activities (outside duty). Next, we need to
consider the capacity of the activities preceding and following repair. These are those in
Phases I, II, and IV. Assuming a single work station for each, we get:

» Receiving, visual check, work order preparation are also done 31 hours/week,
and 31 x 52 (weeks per year) minus the holidays leaves 1540 hours (in the real
world it may be less).

» The pre-inspection check is only done half of the time during each week.
Thus, the capacity of pre-inspection/year = 1/2 x 1540 = 770 hours.

+ Similarly, final inspection is currently done only half of the time during each
week. Thus, the capacity of the final inspection station is 770 hours/year.
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